``Hecke cosets" are *Hphi* where *H* is a Hecke algebra of some
Coxeter group *W* on which the reduced element *phi* acts by
*phi(T_w)=T_{phi(w)}*. This corresponds to the action of the Frobenius
automorphism on the commuting algebra of the induced of the trivial
representation from the rational points of some *F*-stable Borel subgroup
to *{bf G}^F*.

gap> W := CoxeterGroup( "A", 2 );; gap> q := X( Rationals );; q.name := "q";; gap> HF := Hecke( CoxeterCoset( W, (1,2) ), q^2, q ); Hecke(CoxeterCoset(CoxeterGroup("A", 2), (1,2)),[ q^2, q^2 ],[ q, q ]) gap> Display( CharTable( HF ) ); H(2A2)2 1 1 . 3 1 . 1

111 21 3 2P 111 111 3 3P 111 21 111

111 -1 1 -1 21 -2q^3 0 q 3 q^6 1 q^2

We do not yet have a satisfying theory of character tables for these
cosets (the equivalent of `HeckeClassPolynomials`

has not yet been proven
to exist). We hope that future releases of CHEVIE will contain better
versions of such character tables.

`Hecke( `

`WF`, `H` )

`Hecke( `

`WF`, `params` )

Construct a Hecke coset a Coxeter coset `WF` and an Hecke algebra
associated to the CoxeterGroup of `WF`. The second form is equivalent to
`Hecke( `

.
`WF`, Hecke(CoxeterGroup(`WF`), `params`))

This function requires the package "chevie" (see RequirePackage).

`Hecke`

:

returns the untwisted Hecke algebra corresponding to the Hecke coset.

`CoxeterCoset`

:

returns the Coxeter coset corresponding to the Hecke coset.

`CoxeterGroup`

:

returns the untwisted Coxeter group corresponding to the Hecke coset.

`Print`

:

prints the Hecke coset in a form which can be read back into**GAP**.

`CharTable`

:

returns the character table of the Hecke coset.

These functions require the package "chevie" (see RequirePackage).
Previous Up Next

Index

GAP 3.4.4

April 1997=======

``Hecke cosets" are *Hphi* where *H* is a Hecke algebra of some
Coxeter group *W* on which the reduced element *phi* acts by
*phi(T_w)=T_{phi(w)}*. This corresponds to the action of the Frobenius
automorphism on the commuting algebra of the induced of the trivial
representation from the rational points of some *F*-stable Borel subgroup
to *{bf G}^F*.

gap> W := CoxeterGroup( "A", 2 );; gap> q := X( Rationals );; q.name := "q";; gap> HF := Hecke( CoxeterCoset( W, (1,2) ), q^2, q ); Hecke(CoxeterCoset(CoxeterGroup("A", 2), (1,2)),[ q^2, q^2 ],[ q, q ]) gap> Display( CharTable( HF ) ); H(2A2)2 1 1 . 3 1 . 1

111 21 3 2P 111 111 3 3P 111 21 111

111 -1 1 -1 21 -2q^3 0 q 3 q^6 1 q^2

We do not yet have a satisfying theory of character tables for these
cosets (the equivalent of `HeckeClassPolynomials`

has not yet been proven
to exist). We hope that future releases of CHEVIE will contain better
versions of such character tables.

`Hecke( `

`WF`, `H` )

`Hecke( `

`WF`, `params` )

Construct a Hecke coset a Coxeter coset `WF` and an Hecke algebra
associated to the CoxeterGroup of `WF`. The second form is equivalent to
`Hecke( `

.
`WF`, Hecke(CoxeterGroup(`WF`), `params`))

This function requires the package "chevie" (see RequirePackage).

`Hecke`

:

returns the untwisted Hecke algebra corresponding to the Hecke coset.

`CoxeterCoset`

:

returns the Coxeter coset corresponding to the Hecke coset.

`CoxeterGroup`

:

returns the untwisted Coxeter group corresponding to the Hecke coset.

`Print`

:

prints the Hecke coset in a form which can be read back into**GAP**.

`CharTable`

:

returns the character table of the Hecke coset.

These functions require the package "chevie" (see RequirePackage).
Previous Up Next

Index

GAP 3.4.4

January 1997